If it's not what You are looking for type in the equation solver your own equation and let us solve it.
33n^2-33n-120=0
a = 33; b = -33; c = -120;
Δ = b2-4ac
Δ = -332-4·33·(-120)
Δ = 16929
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16929}=\sqrt{81*209}=\sqrt{81}*\sqrt{209}=9\sqrt{209}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-33)-9\sqrt{209}}{2*33}=\frac{33-9\sqrt{209}}{66} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-33)+9\sqrt{209}}{2*33}=\frac{33+9\sqrt{209}}{66} $
| 7x+8x-6=3(5x+3) | | 2x/3-4x/7=4 | | 7x^2+3x/(5x+9)=12 | | 3+-4x-5x=-78 | | (1/5)+(1/x)=1/6 | | 32+3(x-4=8x-40 | | 2/500=1/x | | (l+1)=-31l+3(2+5l)+8 | | 0.4/1=1.2/x | | 250/1=1000/x | | 12.5/5=37.5/x | | 20/600=15/x | | 4/2=12/x | | 20=10^0.3x | | 18.9=21.x | | =5x+4 | | 2(4b+2)=4(3b+1) | | 2(u-9)-3=-4(-5u+9)-9u | | 2(x-7)+4=1x-4 | | P/q=0.53 | | 2(x-7)+9=2x-4 | | 3^9x+5=81^x-3 | | 5(a+1)-5=2(a-3)+12 | | 2v-27=-9(v-8) | | 1,21=(1+x)² | | 10x-15=6x+4 | | 110=2x+20 | | 1000*(1+x)^2=1210 | | -5(3x-21)=2(x-16)-67 | | 12x-4+13=5x+12 | | 2x2−x−15=0 | | (x-3)x(2x+1)=0 |